Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications
نویسندگان
چکیده
Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications. Keywords—Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.
منابع مشابه
Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene
We report for the first time the preparation of highly stable graphene (GE)-based nanofluids with ionic liquid as base fluids (ionic liquid-based nanofluids (Ionanofluids)) without any surfactant and the subsequent investigations on their thermal conductivity, specific heat, and viscosity. The microstructure of the GE and MWCNTs are observed by transmission electron microscope. Thermal conducti...
متن کاملNanofluids for Heat Transfer Enhancement – A Review
A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...
متن کاملNumerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کاملSlip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels
The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...
متن کاملNanofluids for Heat Transfer – Potential and Engineering Strategies
In an age of increasing heat fluxes and power loads in applications as diverse as power electronics, renewable energy, transportation, and medical equipment, liquid cooling systems are necessary to enhance heat dissipation, improve energy efficiency, and lengthen device lifetime. To satisfy these increasing thermal management needs, the heat transfer efficiency of conventional fluids must be im...
متن کامل